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ABSTRACT1
The missing data problem remains as a difficulty in transportation information system, which seriously2
restricted the application of intelligent transportation system, e,g. traffic control and traffic flow prediction.3
To solve this problem, numerous imputation methods had been proposed in the last decade. However, few4
existing studies had fully used the spatial correlation for traffic data imputation. In this paper, tensor based5
imputing method, which had been proven to be an effective imputation method, is applied to multi-detector6
missing data imputation for freeway corridor by constructing the traffic data into a 4-way spatial tensor. We7
make three main contributions in this paper: (a) Various tensor patterns are explored to model the traffic8
data, and take the multi-detectors into account. (b) Various tensor completion methods are explored and9
evaluated for missing traffic data imputation. Experiments show HaLRTC is more robust for missing traffic10
data than TDI. (c) The coefficient of the number of loop detectors used for missing traffic volume and speed11
data imputation is studied. Experiment results show the number of locations related to the spatial-temporal12
correlation of traffic data.13
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INTRODUCTION14
With a steady increase of freeway traffic in the recent years worldwide, the traffic congestion of freeways15
becomes more serious. The freeway traffic congestion can no longer be dealt with simply by extending more16
highways for economical and environmental reasons (Kerner, 2009). As a consequence, the optimization of17
existing traffic network especially the freeway corridor control (Liu et al., 2011) has increasingly become a18
more desirable alternative for management of freeway traffic congestion. Intelligent transportation systems19
(ITS) play a significant role in optimizing the existing traffic network. Real-time traffic data is one of the20
key factor to ITS. It is evidently indicated that the conventional ITS will eventually evolve into a data-driven21
intelligent transportation system. And traffic data that are collected from multiple sources such as loop22
detector, GPS and video sensors will become more and more important in ITS. (Ran et al., 2012; Zhang23
et al., 2011)24

Unfortunately, missing data problems are inevitable due to detector faults or transmission distortion25
(Lin & Chang, 2006; Faouzi et al., 2011), which seriously restricts the application and generalization of26
intelligent transportation systme. For example, the traffic control system requires sufficient traffic flow data27
(i.e,traffic volumes, occupancy rates, and flow speeds) to generate appropriate traffic management strategies28
(Carlson et al., 2010). In traffic forecast area, if there exists missing data, the predicting performance29
will reduce sharply (Xu et al., 2010; Van Lint et al., 2005). Without proper imputation methods, traffic30
counts with missing values are usually either discarded or simply estimated, which may seriously affect the31
performance of ITS. Consequently, it is very urgent to develop a method with better effect to estimating the32
missing data.33

The frequently used imputation methods for missing traffic data are historical (neighboring) im-34
putation methods(Ni et al., 2005), spline (including linear)/regression imputation methods (Chen & Shao,35
2000), autoregressive integrated moving average (ARIMA) models (Zhong et al., 2004) and Probabilistic36
Principal Component Analysis (Qu et al., 2009). These methods focus on imputing missing data for a sin-37
gle loop detector, which often utilize the temporal correlations such as day mode periodicity, week mode38
periodicity and interval variation of traffic data to estimate missing data. Nevertheless, the traffic data are39
spatial-temporal correlated (Wu et al., 2012; Krawczyk et al., 2011) . Compared with temporal correlations,40
the spatial correlations of traffic data have not been fully utilized. The most state-of-art methods only use41
spatial information from neighbor detectors (Zhang, 2013; Zhang & Liu, 2009; Li et al., 2013). However,42
the traffic data are correlated not only in short-distance (Liu et al., 2009b), but also in a large area (Min &43
Wynter, 2011) especially in a freeway corridor (Van Lint & Hoogendoorn, 2010). As a result, only using44
neighbor detector information is not the best approach for imputation of missing traffic data.45

Recently, a tensor (multi-way array) based method (Tan et al., 2013b; Huachun Tan & Zhang, 2013)46
has been applied to missing traffic data imputation and outlier traffic data recovery. The traffic data are mod-47
eled by multi-way matrix (tensor) pattern, and the missing traffic data are estimated by tensor completion48
method. Tensor completion allows for combining and utilizing the multi-mode temporal correlations (e.g.,49
week-mode, day-mode, and interval-mode) to estimate the missing data, which has been proved to be a effi-50
cient tool to model traffic data for missing traffic data imputation. Despite the good results of tensor-based51
method, this work is still applied for single loop detector missing data imputation.52

In this paper, we focus on the missing traffic data completion for multi-loop detectors on freeway53
corridor. Motivated by the power of tensor pattern in modeling multi-correlations of traffic data and the54
reliable performance of tensor completion in missing traffic data imputation, this paper explores the ability55
of tensor based method for multi-loop detector’s missing data imputation. The traffic data are constructed56
into various 4-way spatial tensor, which covers the spatial information of the freeway corridor. Two tensor57
completion methods, including HaLRTC (Liu et al., 2009a) and TDI (Tan et al., 2013b), are explored to58
mine the underlying spatial-temporal information and impute the missing traffic data. Experimental results59
on missing traffic volume and speed data show that the 4-way tensor considering the spatial information60
is better than 3-way tensor without spatial correlation. Tensor completion method based on trace norm -61
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HaLRTC outperforms the method base on tensor decomposition - TDI. The best number of loop detectors62
for missing traffic data completion is also studied. Experiment results show the spatial-temporal correlation63
of traffic data related to the number of loop detectors.64

This paper is organized as follows: The necessary knowledge about tensor and tensor completion65
are given in section 2. The tensor model for freeway corridor is conducted in section 3. In section 4, the66
experiment results are given. The conclusion and future works are discussed in section 5.67

TENSOR BASIC AND TENSOR COMPLETION68

Notation and Tensor69
Tensor which is also called the multidimensional array is the higher-order generalization of vector and70
matrix. In this paper, the nomenclatures and the notations in (Acar et al., 2011; Tan et al., 2013a) on71
tensor are partially adopted. Scalars are denoted by lowercase letters (a, b, c. . . ), vectors by bold lowercase72
letters (a,b, c. . . ),and matrices by uppercase letters (A,B,C. . . ). Tensors are written as calligraphic letters73
(A,B, C. . . ).74

N-mode tensors are denoted as A ∈ RI1×I2×...×IN . Its elements are denoted as ai1...ik...in , where75
1 ≤ ik ≤ Ik, 1 ≤ k ≤ N . The mode-n unfolding (also called matricization or flattening) of a tensor76
A ∈ RI1×I2×...×IN is defined as unfold(A, n) = An. The tensor element (i1, i2, , iN ) is mapped to the77
matrix element (in, j), where78

j = 1 +

N∑
k=1
k 6=n

(ik − 1)Jk, with Jk =

k−1∐
m=1
m6=n

Im. (1)

Therefore, An ∈ RIn×J where J =
∐

k=1
k 6=n

N Ik. The n− rank of a N-dimensional tensorA ∈ RI1×I2×...×IN ,79

denoted by rn, is the rank of the mode-n unfolding matrix A(n).80

rn = rankn(A) = rank(A(n)). (2)

The inner product of two same-size tensors A,B ∈ RI1×I2×...×IN is defined as the sum of the81
products of their entries, i.e.82

(A,B) =
∑
i1

. . .
∑
ik

. . .
∑
iN

ai1...ik...iN bi1...ik...iN (3)

Given two tensorsA and B of same size I1× I2× . . .× IN , their Hadamard (element wise) product83
is denoted by A ∗ B, is defined as84

(A ∗ B)i1...ik...iN = ai1...ik...iN bi1...ik...iN (4)

The corresponding Frobenius norm is ‖A‖F =
√

(A,A). For any 1 ≤ n ≤ N . The n-mode85
(matrix) product of a tensor A ∈ RI1×I2×...×IN with a matrix M ∈ RJ×IN is denoted by A ×n M and is86
of size I1 × . . .× In − 1× J × In + 1× . . .× IN . In terms of flattened matrix, the n-mode product can be87
expressed as88

Y = A×n M ⇐⇒ Y(n) = MA(n) (5)

The definition of the trace norm for the general tensor case is89

‖A‖∗ =
N∑
i=1

αi‖X(i)‖∗ (6)
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where αi are constants satisfying αi ≥ 0 and
∑n

i=1 αi = 1. In essence, the trace norm of a tensor is a90
convex combination of the trace norms of all matrices unfolded along each mode.91

Low-n-rank tensor completion for traffic data92
As (Tan et al., 2013b) analyzed, As shown in Fig.1, N days’ traffic data of this detector can be formulated93
as a three-way data tensorA ∈ RN×24×12 according to the multi mode temporal correlations of traffic data.94
Traffic data are highly correlated in multiple modes. As a result, the missing data in the traffic tensor can be95
estimated by tensor completion.96

In general, there are two methods to estimate missing data including methods based on tensor de-97
composition (TDI) (Tan et al., 2013b) and trace norm based tensor completion method (LRTC) (Liu et al.,98
2009a, 2013).99

In this paper, the high accuray low-rank tensor completion algorithm is applied to multi-loop miss-100
ing traffic data completion. The method is to use the trace norm ‖ ‖∗ to approximate the n-rank of tensors.101
The advantage of the trace norm is that it is the tightest convex envelop for the rank of matrices (Srebro102
& Shraibman, 2005). By introducing additional ralaxation factor matrices M1,M2,M3, the minimum of103
tensorA trace norm can be solved independently. And it has been proved that the trace-norm based methods104
outperform tensor decomposition based method for missing data in literature. The optimization problem is:105

min
X ,Mi

:
∑
i

αi‖M(i)‖∗ +
βi
2
‖X(i) −Mi‖F 2

s.t : X ∗W = A ∗W
(7)

W is a nonnegative weight tensor with the same size asA to indicate where missing data happen. Formally,106
it can be defined as107

Wi1i2i3 =

{
1 if ai1i2i3 is known
0 if ai1i2i3 is missing

(8)

Then, the block coordinate descent(BCD) is employed to optimize the problem. The basic idea of108
block coordinate descent is to optimize a group of variables while fixing the other groups (Tseng, 2001).The109
accuracy of low-n-rank tensor completion can be promoted by using ADMM framework. The low-n-rank110
tensor completion algorithm employing ADMM is called HaLRTC. More detailed discussion can be found111
in (Liu et al., 2009a).112

TENSOR MODEL FOR FREEWAY CORRIDOR TRAFFIC DATA113
We apply tensor completion to freeway corridor traffic data missing problem by taking the spatial-temporal114
correlation into account in this section. The traffic tensor of freeway corridor is conducted by 12 locations115
in a freeway corridor from PeMS (2013) database. As shown in Fig.2, these loop detectors are located at116
south bound freeway SR58. The sampling period is between May 13. 2013 and July 21. 2013. The data117
are nearly all observed with a very low missing ratio (about 2%), which have been imputed by built-in118
imputation methodology of PeMS (Crossroads, 2008). Due to the low missing ratio, the data set is regarded119
as an approximate complete data set.120

Intuitively, both speed and volume are highly spatial-correlated in a freeway corridor as shown in121
Fig.3 and 4. To use this strong correlation to handle multi-loop detectors missing data in a freeway corridor122
by tensor completion, a location dimension is added to single loop traffic 3-way tensor to construct a new123
4-way tensor A ∈ R24(hour)×12(points)×70(days)×12(locations). The 4-way tensor is shown in Fig.4.124

Some previous works (Signoretto et al., 2011) show that the multi-mode correlations of data have125
a great effect on the performance of the tensor completion. Obviously, quantitative analysis of the traffic126
tensor multi-mode correlations not only helps to choose the number of loop detectors constructing tensor,127
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but also helps to determine the parameters of tensor completion methods. Formally, the correlations of traffic128
data are measured by similarity coefficient:129

sm =

∑
nm≥i≥j≥1Rm(i, j)

nm(nm − 1)/2
(9)

where nm refers to the number of data points; Rm(i, j) refers to the entry of the correlation coefficient130
matrix of the m-mode unfolded matrix of the tensor.131

The hour mode, interval mode, day mode and link mode correlations of speed and volume traffic132
data tensor (A ∈ R12×24×70×12) for the freeway corridor are given in Table.1133

Table.1 shows that both volume and speed are highly correlated in day mode and interval mode with134
a very high coefficient over 0.9. The speed data are stronger correlated in hour mode than volume data while135
the correlation of speed is very low with such a tensor size in location mode.136

Furthermore, the relation between length of loop dimension (number of loop detectors) and multi-137
mode correlations are tested. Along the direction from west to east (upstream to downstream) in Fig.3,138
different number from 2 to 12 of loop detectors are used to construct 11 tensor models. The multi-mode139
correlations of these tensor models are given in Fig.5.140

The results reflect different tendencies of each mode correlation with location of loop dimension141
length. In the general trend, volume tensor is stronger spatial-correlated while weaker temporal-correlated142
especially in interval mode with a longer loop dimension length. On the contrast, speed tensor is stronger143
temporal-correlated while weaker spatial-correlated with the increase of loop dimension length. Traffic144
volume are strongest temporal-correlated when only using 2 locations of loop detector and strongest spatial-145
correlated when using 7 loop detectors. Traffic speed are strongest temporal-correlated when using 9 loca-146
tions of loop detectors and strongest spatial-correlated when using 4 locations of loop detectors. The results147
provide a reference for constructing the spatial-traffic-data tensor while doing missing traffic data imputation148
and selecting the parameters of tensor completion algorithm.149

NUMERICAL EXPERIMENTS AND ANALYSIS150
In this paper, the proposed spatial-tensor is tested on two kinds of missing patterns as follows:151
1) Missing Completely at Random (MCR), in which the missing points are completely independent of each152
other.153
2) Missing at Random (MR), in which the missing points are related to the neighboring points. Thus, they154
usually appear as a small group of sequential points lost at one time, but the groups are randomly scattered155
(Qu et al., 2009)156

We assess the performance of proposed spatial-tensor in terms of its ability to reconstruct the miss-157
ing data. The spatial-tensor is tested on HaLRTC algorithm (Liu et al., 2009a, 2013). The performance are158
compared with 3-way temporal-tensor imputing missing data by TDI (Tan et al., 2013b) and HaLRTC.159

For the 4-way tensor. The selection and parameter setting of HaLRTC are: The weighted coeffi-160
cient αi is set to [0.19,0.27,0.27,0.27] for volume data, [0.32,0.32,0.32,0.04] for speed data, The maximum161
iterations are set to 500, the tolerance of the relative difference of outputs of two neighbor iterations are set162
to 10−5. Under 3-way case, the n-rank of TDI is set to [3,3,3] for volume, [3,3,2] for speed. The weighted163
coefficient αi of HaLRTC is set to [1/3,1/3,1/3] for volume and [0.39,0.39,0.22] for speed.164

Evaluation criteria of missing imputing performance165
The imputing performance is evaluated by the root mean squared error (RMSE) between the estimated166
missing points test and the original data points treal. RMSE is a commonly used error criteria, which167
reflects the average performance for the missing data imputing.168
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RMSE =

√√√√ 1

M

M∑
m=1

(treal − teast)2m (10)

where (treal − teast)m are the m-th error between the known real value and the estimated value, M is the169
number of missing data, which can be used to calculate the missing ratio, as follows,170

r =M/N × 100% (11)

where r means the ratio of missing data; N means the total data number of test data.171
MR is generated with respect to the observed patterns as follows: The location of the first missing172

data point in each missing group is generated to uniformly be distributed. The length of the missing data173
series is modeled as a normal distributed number between 0 and 20.174

All the methods were performed using Matlab on a Windows Workstation with a Dual-Core Intel(R)175
Core(TM) 2.50 GHZ CPU and 4GB RAM.176

Experiment results177
To verify the advantage of 4-way tensor, the traffic data is formed into a 4-way tensor with size of 12 ×178
24 × 70 × 12 and the missing data is estimated by HaLRTC in a unify framework. The results of 4-way179
tensor are compared with the results of estimating missing traffic data in 12 different 3-way tensor with size180
of 12× 24× 70 by TDI and HaLRTC. The missing ratio is ranging from 0.1 to 0.6. The experiment results181
are shown in Fig.6 and 7.182

In Fig 6 and 7, the 4-way tensor outperforms 3-way tensor at almost all the missing rate. The reason183
is that the 4-way tensor can utilize the information of spatial modes simultaneously, while 3-way tensor only184
mines temporal correlation and independently estimating missing data without consideration about spatial185
correlation. It indicates that it is necessary to use spatial information when dealing with missing traffic data186
and it is far from enough that only using temporal information to impute missing traffic data.187

3-way HalRTC outperforms 3-way TDI except when estimating missing volume under MR case. It188
indicates that low-n-rank tensor completion may be more suitable for traffic data than tensor decomposition189
based method.190

However, it is not easy to determine the best parameter for tensor completion since different traf-191
fic data set encode different mode structure characteristics. In this paper, the parameter are firstly set by192
empirical hypothesis, then best parameter can be easily found by fine-tuning according to the experiment193
results.194

The above results indicate that estimate missing data of each location in a unify spatial-tensor is195
more reliable than estimating them independently without consideration of spatial correlation when missing196
data happens in the whole detectors of freeway corridor. Sometimes missing data only occur in a single197
location of loop detectors. We also studied the appropriate number of location to use under this situation.198
We set the upstream detector in fig.2 contains missing data with ratio ranging from 10% to 60%, then using199
loop detectors with number ranging from 1 to 12 to construct the tensor. The results are shown in Fig 8 and200
9.201

Experiment shows the appropriate number of locations to construct the traffic tensor when missing202
data only occurs in a loop detector. Both under MCR and MR, the imputation performance can be promoted203
by using more than 4 loop detectors at the downstream of the loop detector contained missing data to204
construct traffic tensors. While for speed data, the tensor with length of 3 in loop dimension that only using205
correlations from 2 downstream locations achieve the highest accuracy. The reason may lie in that speed206
get strongest spatial correlation with 3 loop detectors. While volume are higher spatial correlated with more207
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than 5 locations as analyzed. The results also show that impute missing volume data, only using adjacent208
loop detectors is far from enough.209

However. It is not easy to determine the best parameter group for HaLRTC since different traffic210
data set encode different mode structure characteristics. Fortunately, the best parameter group can be easily211
found by fine-tuning.212

CONCLUSION213
Freeway traffic control plays a key role on the alleviation of freeway traffic congestion. The traffic control214
system requires sufficient traffic flow data. The missing data in traffic information system poses a serious215
challenge for the alleviation of freeway traffic congestion. In previous work, most missing data imputation216
methods focus on a single loop detector traffic data imputation or only using a limited number of loop217
detectors to impute missing data.218

In this work we have shown an alternative approach to work around the multi-loop missing data219
problem by tensor completion. We construct a freeway corridor traffic data into a 4-way spatial-tensor.220
The results shown estimating missing data in a unify framework by tensor completion is more reliable than221
imputing every single location’s missing data independently without consideration about spatial correlation.222
This provides further evidence that not only missing data in the freeway corridor but also the large-scale223
area such may can be imputed by a multi-way tensor completion.224
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TABLE 1 the multi-mode correlations of traffic data for the freeway corridor

Data type Hour mode Interval mode Day mode Loop mode

Volume 0.6844 0.9501 0.9155 0.8977
Speed 0.8454 0.9607 0.9191 0.3686
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FIGURE 1 Three way traffic data for one loop detector traffic data

FIGURE 2 The Detectors From E-SR58

FIGURE 3 The speed data in a freeway corridor
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FIGURE 4 The Freeway Corridor Traffic Tensor

FIGURE 5 The relation between Loop dimension Length and multi-mode correlations
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FIGURE 6 The performance of tensor completion under MCR case

FIGURE 7 The performance of tensor completion under MR case
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FIGURE 8 The performance of tensor completion under MCR when only one detector contain miss-
ing data

FIGURE 9 The performance of tensor completion under MR when only one detector contain missing
data
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